提交 d0198040 authored 作者: 唐睿骞's avatar 唐睿骞

first add

上级
import time
from machine import Pin
MAXTIMINGS = 85
DHT11 = 11
DHT22 = 22
DHT21 = 21
AM2301 = 21
class DHT(object):
def __init__(self, data_pin,Type=DHT11):
self.Data_pin = data_pin
self.__pinData = Pin(data_pin, Pin.OUT)
self.firstreading = True
self.__pinData.value(1)
self._lastreadtime = 0
self.data=[0]*5
self.temp = 0
self.humid = 0
def read(self):
i=0
j=0
self.__pinData.value(1)
#time.sleep(0.25)
self.data[0] = self.data[1] = self.data[2] = self.data[3] = self.data[4] = 0
# now pull it low for ~20 milliseconds
pinData = Pin(self.Data_pin, Pin.OUT, None)
pinData.value(0)
time.sleep_ms(20)
pinData.value(1)
time.sleep_us(41)
pinData = Pin(self.Data_pin, Pin.IN)
DHT11_TIMEOUT = -1
time_cnt=0
while(0 ==pinData.value()):
time.sleep_us(5)
time_cnt = time_cnt+1
if(time_cnt > 16):
return
#DHT11将总线拉高至少80us,为发送传感器数据做准备。
time_cnt=0
while(1 == pinData.value()):
time.sleep_us(5)
time_cnt = time_cnt+1
if(time_cnt > 16):
return
for j in range(5):
i = 0
result=0
PINC = 1
for i in range(8):
while(not (PINC & pinData.value())): # wait for 50us
pass
#print('wait 50us')
time.sleep_us(25)
if(PINC & pinData.value()):
result |=(1<<(7-i))
while(PINC & pinData.value()): # wait '0' finish
time.sleep_us(5)
time_cnt = time_cnt+1
if(time_cnt > 20):
return
#print('wait 1')
self.data[j] = result
pinData = Pin(self.Data_pin, Pin.OUT, None)
pinData.value(1)
dht11_check_sum = (self.data[0]+self.data[1]+self.data[2]+self.data[3]&0xff)
# check check_sum
if(self.data[4] is not dht11_check_sum):
print("DHT11 checksum error")
#print(self.data)
if ((j >= 4) and ( self.data[4] == dht11_check_sum)):
return True
return False
def readHumidity(self):
if (self.read()):
self.humid = float(self.data[0])
self.humid = self.humid + float(self.data[1]/10)
return self.humid
def readTemperature(self):
if (self.read()):
self.temp = float(self.data[2])
self.temp = self.temp + float(self.data[3]/10)
return self.temp
def readTempHumid(self):
if (self.read()):
self.temp = float(self.data[2])
self.temp = self.temp + float(self.data[3]/10)
self.humid = float(self.data[0])
self.humid = self.humid + float(self.data[1]/10)
return self.temp , self.humid
'''
dht = DHT(6)
for i in range(100):
#dht.read()
dht.readHumidity()
dht.readTemperature()
'''
import array, time
from machine import Pin
import rp2
# Configure the number of WS2812 LEDs.
#brightness = 0.2
@rp2.asm_pio(sideset_init=rp2.PIO.OUT_LOW, out_shiftdir=rp2.PIO.SHIFT_LEFT, autopull=True,pull_thresh=24)
def ws2812():
T1 = 2
T2 = 5
T3 = 3
wrap_target()
label("bitloop")
out(x, 1) .side(0) [T3 - 1]
jmp(not_x, "do_zero") .side(1) [T1 - 1]
jmp("bitloop") .side(1) [T2 - 1]
label("do_zero")
nop() .side(0) [T2 - 1]
wrap()
class WS2812():
def __init__(self, pin_num, led_count, brightness = 0.5):
self.Pin = Pin
self.led_count = led_count
self.brightness = brightness
self.sm = rp2.StateMachine(0, ws2812, freq=8_000_000, sideset_base=Pin(pin_num))
self.sm.active(1)
self.ar = array.array("I", [0 for _ in range(led_count)])
def pixels_show(self):
dimmer_ar = array.array("I", [0 for _ in range(self.led_count)])
for i,c in enumerate(self.ar):
r = int(((c >> 8) & 0xFF) * self.brightness)
g = int(((c >> 16) & 0xFF) * self.brightness)
b = int((c & 0xFF) * self.brightness)
dimmer_ar[i] = (g<<16) + (r<<8) + b
self.sm.put(dimmer_ar, 8)
time.sleep_ms(10)
def pixels_set(self, i, color):
self.ar[i] = (color[1]<<16) + (color[0]<<8) + color[2]
def pixels_fill(self, color):
for i in range(len(self.ar)):
self.pixels_set(i, color)
def color_chase(self,color, wait):
for i in range(self.led_count):
self.pixels_set(i, color)
time.sleep(wait)
self.pixels_show()
time.sleep(0.2)
def wheel(self, pos):
# Input a value 0 to 255 to get a color value.
# The colours are a transition r - g - b - back to r.
if pos < 0 or pos > 255:
return (0, 0, 0)
if pos < 85:
return (255 - pos * 3, pos * 3, 0)
if pos < 170:
pos -= 85
return (0, 255 - pos * 3, pos * 3)
pos -= 170
return (pos * 3, 0, 255 - pos * 3)
def rainbow_cycle(self, wait):
for j in range(255):
for i in range(self.led_count):
rc_index = (i * 256 // self.led_count) + j
self.pixels_set(i, self.wheel(rc_index & 255))
self.pixels_show()
time.sleep(wait)
from machine import I2C
import time
ADXL345_DEVICE = (0x53)
""" ------- Register names ------- """
ADXL345_DEVID =0x00
ADXL345_RESERVED1 =0x01
ADXL345_THRESH_TAP =0x1d
ADXL345_OFSX =0x1e
ADXL345_OFSY =0x1f
ADXL345_OFSZ =0x20
ADXL345_DUR =0x21
ADXL345_LATENT =0x22
ADXL345_WINDOW =0x23
ADXL345_THRESH_ACT =0x24
ADXL345_THRESH_INACT =0x25
ADXL345_TIME_INACT =0x26
ADXL345_ACT_INACT_CTL =0x27
ADXL345_THRESH_FF =0x28
ADXL345_TIME_FF =0x29
ADXL345_TAP_AXES =0x2a
ADXL345_ACT_TAP_STATUS =0x2b
ADXL345_BW_RATE =0x2c
ADXL345_POWER_CTL =0x2d
ADXL345_INT_ENABLE =0x2e
ADXL345_INT_MAP =0x2f
ADXL345_INT_SOURCE =0x30
ADXL345_DATA_FORMAT =0x31
ADXL345_DATAX0 =0x32
ADXL345_DATAX1 =0x33
ADXL345_DATAY0 =0x34
ADXL345_DATAY1 =0x35
ADXL345_DATAZ0 =0x36
ADXL345_DATAZ1 =0x37
ADXL345_FIFO_CTL =0x38
ADXL345_FIFO_STATUS =0x39
ADXL345_BW_1600 =0xF # 1111
ADXL345_BW_800 =0xE # 1110
ADXL345_BW_400 =0xD # 1101
ADXL345_BW_200 =0xC # 1100
ADXL345_BW_100 =0xB # 1011
ADXL345_BW_50 =0xA # 1010
ADXL345_BW_25 =0x9 # 1001
ADXL345_BW_12 =0x8 # 1000
ADXL345_BW_6 =0x7 # 0111
ADXL345_BW_3 =0x6 # 0110
"""
Interrupt PINs
INT1: 0
INT2: 1
"""
ADXL345_INT1_PIN =0x00
ADXL345_INT2_PIN =0x01
"""Interrupt bit position"""
ADXL345_INT_DATA_READY_BIT =0x07
ADXL345_INT_SINGLE_TAP_BIT =0x06
ADXL345_INT_DOUBLE_TAP_BIT =0x05
ADXL345_INT_ACTIVITY_BIT =0x04
ADXL345_INT_INACTIVITY_BIT =0x03
ADXL345_INT_FREE_FALL_BIT =0x02
ADXL345_INT_WATERMARK_BIT =0x01
ADXL345_INT_OVERRUNY_BIT =0x00
ADXL345_DATA_READY =0x07
ADXL345_SINGLE_TAP =0x06
ADXL345_DOUBLE_TAP =0x05
ADXL345_ACTIVITY =0x04
ADXL345_INACTIVITY =0x03
ADXL345_FREE_FALL =0x02
ADXL345_WATERMARK =0x01
ADXL345_OVERRUNY =0x00
ADXL345_OK =1 # no error
ADXL345_ERROR =0 # indicates error is predent
ADXL345_NO_ERROR =0 # initial state
ADXL345_READ_ERROR =1 # problem reading accel
ADXL345_BAD_ARG =2 # bad method argument
class AccelerationAdxl345(object):
def __init__(self, i2c, addr=ADXL345_DEVICE, drdy=None):
self.i2c_device = i2c
time.sleep(0.1)
#self.rgbMatrixData = [0xFF]*64
def read(self, reg_base, reg, buf):
self.write(reg)
time.sleep(.001)
self.i2c_device.readfrom_into(59,buf)
def write(self, buf=None):
if buf is not None:
self.i2c_device.writeto(ADXL345_DEVICE, buf)
# i2c_device.writeto(0x58, bytearray([3,100,100,16,39]))
def writeTo(self,address, val):
dta_send = bytearray([address, val])
self.write(dta_send)
def readFrom(self, address, num):
data_0 = address & 0xff
dta_send = bytearray([data_0])
self.write(dta_send)
time.sleep(.001)
result=self.i2c_device.readfrom(ADXL345_DEVICE, num)
return result
def setRegisterBit(self, regAdress, bitPos, state):
bytes=self.readFrom(regAdress, 1)
for _b in bytes:
value = int(_b)
if (state):
value |= (1 << bitPos)
else:
value &= ~(1 << bitPos)
self.writeTo(regAdress, value)
def acc_adxl345_init(self):
#Turning on the ADXL345
self.writeTo(ADXL345_POWER_CTL, 0)
self.writeTo(ADXL345_POWER_CTL, 16)
self.writeTo(ADXL345_POWER_CTL, 8)
self.writeTo(ADXL345_THRESH_ACT, 75)
self.writeTo(ADXL345_THRESH_INACT, 75)
self.writeTo(ADXL345_TIME_INACT, 10)
#look of activity movement on this axes - 1 == on; 0 == off
self.setRegisterBit(ADXL345_ACT_INACT_CTL, 6, 1)
self.setRegisterBit(ADXL345_ACT_INACT_CTL, 5, 1)
self.setRegisterBit(ADXL345_ACT_INACT_CTL, 4, 1)
#look of inactivity movement on this axes - 1 == on; 0 == off
self.setRegisterBit(ADXL345_ACT_INACT_CTL, 2, 1)
self.setRegisterBit(ADXL345_ACT_INACT_CTL, 1, 1)
self.setRegisterBit(ADXL345_ACT_INACT_CTL, 0, 1)
self.setRegisterBit(ADXL345_TAP_AXES, 2, 0)
self.setRegisterBit(ADXL345_TAP_AXES, 1, 0)
self.setRegisterBit(ADXL345_TAP_AXES, 0, 0)
#set values for what is a tap, and what is a double tap (0-255)
#setTapThreshold(50); # 62.5mg per increment
self.writeTo(ADXL345_THRESH_TAP, 50)
self.writeTo(ADXL345_DUR, 15)
self.writeTo(ADXL345_LATENT, 80)
#setDoubleTapWindow(200); # 1.25ms per increment
self.writeTo(ADXL345_WINDOW, 200)
#set values for what is considered freefall (0-255)
self.writeTo(ADXL345_THRESH_FF, 7)
self.writeTo(ADXL345_TIME_FF, 45)
#setting all interrupts to take place on int pin 1
#I had issues with int pin 2, was unable to reset it
self.setRegisterBit(ADXL345_INT_MAP, ADXL345_INT_SINGLE_TAP_BIT, ADXL345_INT1_PIN)
self.setRegisterBit(ADXL345_INT_MAP, ADXL345_INT_DOUBLE_TAP_BIT, ADXL345_INT1_PIN)
self.setRegisterBit(ADXL345_INT_MAP, ADXL345_INT_FREE_FALL_BIT, ADXL345_INT1_PIN)
self.setRegisterBit(ADXL345_INT_MAP, ADXL345_INT_ACTIVITY_BIT, ADXL345_INT1_PIN)
self.setRegisterBit(ADXL345_INT_MAP, ADXL345_INT_INACTIVITY_BIT, ADXL345_INT1_PIN)
#register interrupt actions - 1 == on; 0 == off
self.setRegisterBit(ADXL345_INT_ENABLE, ADXL345_INT_SINGLE_TAP_BIT, 1)
self.setRegisterBit(ADXL345_INT_ENABLE, ADXL345_INT_DOUBLE_TAP_BIT, 1)
self.setRegisterBit(ADXL345_INT_ENABLE, ADXL345_INT_FREE_FALL_BIT, 1)
self.setRegisterBit(ADXL345_INT_ENABLE, ADXL345_INT_ACTIVITY_BIT, 1)
self.setRegisterBit(ADXL345_INT_ENABLE, ADXL345_INT_INACTIVITY_BIT, 1)
def acc_adxl345_read_xyz(self):
ADXL345_TO_READ = (6)
_buff = self.readFrom(ADXL345_DATAX0, ADXL345_TO_READ) #read the acceleration data from the ADXL345
if _buff[1] <= 0:
x=_buff[0]
else:
x=(_buff[0]-255)
if _buff[3] <= 0:
y=_buff[2]
else:
y=(_buff[2]-255)
if _buff[5] <= 0:
z=_buff[4]
else:
z=(_buff[4]-255)
#x = int(((_buff[1]) << 8) | _buff[0])
#y = int(((_buff[3]) << 8) | _buff[2])
#z = int(((_buff[5]) << 8) | _buff[4])
#print("%d, %d, %d\r\n", x, y, z)
return [x,y,z]
def acc_adxl345_read_acc(self):
__Gains = [0.00376390, 0.00376009, 0.00389265]
xyz=self.acc_adxl345_read_xyz()
ax = xyz[0] * __Gains[0]
ay = xyz[1] * __Gains[1]
az = xyz[2] * __Gains[2]
return [ax,ay,az]
def get_acc_adxl345_property(self,xyz):
axyz=self.acc_adxl345_read_acc()
if(xyz == 0):
return axyz[0]
if(xyz == 1):
return axyz[1]
if(xyz == 2):
return axyz[2]
"""
acceleration = AccelerationAdxl345()
acceleration.acc_adxl345_init()
acceleration.get_acc_adxl345_property(0)
acceleration.get_acc_adxl345_property(1)
acceleration.get_acc_adxl345_property(2)
"""
# MicroPython SSD1306 OLED driver, I2C and SPI interfaces
from micropython import const
import framebuf
# register definitions
SET_CONTRAST = const(0x81)
SET_ENTIRE_ON = const(0xA4)
SET_NORM_INV = const(0xA6)
SET_DISP = const(0xAE)
SET_MEM_ADDR = const(0x20)
SET_COL_ADDR = const(0x21)
SET_PAGE_ADDR = const(0x22)
SET_DISP_START_LINE = const(0x40)
SET_SEG_REMAP = const(0xA0)
SET_MUX_RATIO = const(0xA8)
SET_COM_OUT_DIR = const(0xC0)
SET_DISP_OFFSET = const(0xD3)
SET_COM_PIN_CFG = const(0xDA)
SET_DISP_CLK_DIV = const(0xD5)
SET_PRECHARGE = const(0xD9)
SET_VCOM_DESEL = const(0xDB)
SET_CHARGE_PUMP = const(0x8D)
# Subclassing FrameBuffer provides support for graphics primitives
# http://docs.micropython.org/en/latest/pyboard/library/framebuf.html
class SSD1306(framebuf.FrameBuffer):
def __init__(self, width, height, external_vcc):
self.width = width
self.height = height
self.external_vcc = external_vcc
self.pages = self.height // 8
self.buffer = bytearray(self.pages * self.width)
super().__init__(self.buffer, self.width, self.height, framebuf.MONO_VLSB)
self.init_display()
def init_display(self):
for cmd in (
SET_DISP | 0x00, # off
# address setting
SET_MEM_ADDR,
0x00, # horizontal
# resolution and layout
SET_DISP_START_LINE | 0x00,
SET_SEG_REMAP | 0x01, # column addr 127 mapped to SEG0
SET_MUX_RATIO,
self.height - 1,
SET_COM_OUT_DIR | 0x08, # scan from COM[N] to COM0
SET_DISP_OFFSET,
0x00,
SET_COM_PIN_CFG,
0x02 if self.width > 2 * self.height else 0x12,
# timing and driving scheme
SET_DISP_CLK_DIV,
0x80,
SET_PRECHARGE,
0x22 if self.external_vcc else 0xF1,
SET_VCOM_DESEL,
0x30, # 0.83*Vcc
# display
SET_CONTRAST,
0xFF, # maximum
SET_ENTIRE_ON, # output follows RAM contents
SET_NORM_INV, # not inverted
# charge pump
SET_CHARGE_PUMP,
0x10 if self.external_vcc else 0x14,
SET_DISP | 0x01,
): # on
self.write_cmd(cmd)
self.fill(0)
self.show()
def poweroff(self):
self.write_cmd(SET_DISP | 0x00)
def poweron(self):
self.write_cmd(SET_DISP | 0x01)
def contrast(self, contrast):
self.write_cmd(SET_CONTRAST)
self.write_cmd(contrast)
def invert(self, invert):
self.write_cmd(SET_NORM_INV | (invert & 1))
def show(self):
x0 = 0
x1 = self.width - 1
if self.width == 64:
# displays with width of 64 pixels are shifted by 32
x0 += 32
x1 += 32
self.write_cmd(SET_COL_ADDR)
self.write_cmd(x0)
self.write_cmd(x1)
self.write_cmd(SET_PAGE_ADDR)
self.write_cmd(0)
self.write_cmd(self.pages - 1)
self.write_data(self.buffer)
class SSD1306_I2C(SSD1306):
def __init__(self, width, height, i2c, addr=0x3C, external_vcc=False):
self.i2c = i2c
self.addr = addr
self.temp = bytearray(2)
self.write_list = [b"\x40", None] # Co=0, D/C#=1
super().__init__(width, height, external_vcc)
def write_cmd(self, cmd):
self.temp[0] = 0x80 # Co=1, D/C#=0
self.temp[1] = cmd
self.i2c.writeto(self.addr, self.temp)
def write_data(self, buf):
self.write_list[1] = buf
self.i2c.writevto(self.addr, self.write_list)
class SSD1306_SPI(SSD1306):
def __init__(self, width, height, spi, dc, res, cs, external_vcc=False):
self.rate = 10 * 1024 * 1024
dc.init(dc.OUT, value=0)
res.init(res.OUT, value=0)
cs.init(cs.OUT, value=1)
self.spi = spi
self.dc = dc
self.res = res
self.cs = cs
import time
self.res(1)
time.sleep_ms(1)
self.res(0)
time.sleep_ms(10)
self.res(1)
super().__init__(width, height, external_vcc)
def write_cmd(self, cmd):
self.spi.init(baudrate=self.rate, polarity=0, phase=0)
self.cs(1)
self.dc(0)
self.cs(0)
self.spi.write(bytearray([cmd]))
self.cs(1)
def write_data(self, buf):
self.spi.init(baudrate=self.rate, polarity=0, phase=0)
self.cs(1)
self.dc(1)
self.cs(0)
self.spi.write(buf)
self.cs(1)
\ No newline at end of file
from machine import Pin, I2C, ADC, UART, SPI, PWM
from time import sleep
from ssd1306 import SSD1306_I2C
from dht11 import *
i2c = I2C(1, scl=Pin(7), sda=Pin(6), freq=200000)#oled 接i2c1口
oled = SSD1306_I2C(128, 64, i2c)
dht2 = DHT(20) #温湿度传感器接D20口
adc = ADC(2) #ADC输入(旋钮电位器)接A0
pwm = PWM(Pin(27))#DAC输出(蜂鸣器)接A1
button = Pin(18, Pin.IN, Pin.PULL_UP)#按键接p18
button.irq(lambda pin: InterruptsButton(),Pin.IRQ_FALLING)#设置按键中断
led = Pin(16, Pin.OUT)#led灯接p16
uart = UART(0, baudrate=115200)
tmp = 0
'''按键中断函数,按下按键时改变灯的状态'''
def InterruptsButton(): #按键输入
global tmp
tmp = ~tmp
led.value(tmp)
#进入循环
while True:
'''串口测试'''
#通过uart发送“hello”
uart.write("hello\n")
sleep(0.01)
if uart.any():
# 如果有数据 读入一行数据返回数据为字节类型
# 例如 b'hello\n'
buff = uart.readline()
# 将收到的信息打印在终端
print('Echo Byte: {}'.format(buff))
'''SPI口测试'''
#spi = SPI(0)
#spi.init(115200)
#spi.write('0xFC')
#buf = spi.read(5)
#buf = bytearray(16)
#spi.write_readinto('out', buf)
#print(buf)
'''模拟口测试'''
val = adc.read_u16()#读取A2口adc值(65535~0)
#驱动蜂鸣器,adc值小于300时关闭蜂鸣器
if val > 300:
pwm.freq(int(val/30))
pwm.duty_u16(1000)
else:
pwm.duty_u16(0)
'''GPIO口测试'''
#温湿度传感器DHT11测试
temp,humid = dht2.readTempHumid()#temp:温度 humid:湿度
'''I2C口测试'''
''' oled显示器测试'''
oled.fill(0)#清屏
oled.text("Temp: " + str(temp),0,0)#第一行显示温度
oled.text("Humid: " + str(humid),0,8)
oled.text("Val: " + str(val),0,16)
oled.text("Buff: " + str(buff),0,24)
oled.text("led: "+ str(tmp and "on" or "off") ,0,32)
oled.show()
'''文件管理测试'''
file = open("test.txt", "w")#打开test.txt文件,写入以下信息
file.write("Temp: " + str(temp) + "\n")
file.write("Humid: " + str(humid) + "\n")
file.write("Val: " + str(val) + "\n")
file.write("Buff: " + str(buff)+ "\n")
file.close()
\ No newline at end of file
from machine import Pin, I2C, ADC, PWM
from time import sleep
adc = ADC(2) #ADC输入(旋钮电位器)接A0
pwm = PWM(Pin(27))#DAC输出(蜂鸣器)接A1
while True:
'''模拟口测试'''
val = adc.read_u16()#读取A2口adc值(65535~0)
#驱动蜂鸣器,adc值小于300时关闭蜂鸣器
if val > 300:
pwm.freq(int(val/30))
pwm.duty_u16(1000)
else:
pwm.duty_u16(0)
from machine import Pin
button = Pin(18, Pin.IN, Pin.PULL_UP)#按键接p18
button.irq(lambda pin: InterruptsButton(),Pin.IRQ_FALLING)#设置按键中断
led = Pin(16, Pin.OUT)#led灯接p16
tmp = 0
'''按键中断函数,按下按键时改变灯的状态'''
def InterruptsButton(): #按键输入
global tmp
tmp = ~tmp
led.value(tmp)
while True:
pass
\ No newline at end of file
from ssd1306 import SSD1306_I2C
from dht11 import *
from machine import Pin, I2C
from time import sleep
i2c = I2C(1, scl=Pin(7), sda=Pin(6), freq=200000)#oled 接i2c1口
oled = SSD1306_I2C(128, 64, i2c)
dht2 = DHT(18) #温湿度传感器接D18口
while True:
temp,humid = dht2.readTempHumid()#temp:温度 humid:湿度
'''I2C口测试'''
''' oled显示器测试'''
oled.fill(0)#清屏
oled.text("Temp: " + str(temp),0,0)#第一行显示温度
oled.text("Humid: " + str(humid),0,8)
oled.show()
#sleep(0.5)
\ No newline at end of file
from ws2812 import WS2812
import time
BLACK = (0, 0, 0)
RED = (255, 0, 0)
YELLOW = (255, 150, 0)
GREEN = (0, 255, 0)
CYAN = (0, 255, 255)
BLUE = (0, 0, 255)
PURPLE = (180, 0, 255)
WHITE = (255, 255, 255)
COLORS = (BLACK, RED, YELLOW, GREEN, CYAN, BLUE, PURPLE, WHITE)
#WS2812(pin_num,led_count)
led = WS2812(18,30)
print("fills")
for color in COLORS:
led.pixels_fill(color)
led.pixels_show()
time.sleep(0.2)
print("chases")
for color in COLORS:
led.color_chase(color, 0.01)
print("rainbow")
led.rainbow_cycle(0)
\ No newline at end of file
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论